today:

homework 3 due (6.2.16, 6.2.22, 6.2.60, 6.3.20, 6.3.28, 6.3.46b) § 7.1 - integration by parts § 7.2 - trig integrals mslc - trig review workshop @ 12:30 and 3:30 in CH 042

monday:

webwork extra credit project I due @ 6:00 am

tuesday:

homework 4 due (6.4.10, 6.4.16, 7.1.28, 7.1.56, 7.2.44, 7.2.66) mslc: integration techniques workshop @ 12:30 and 3:30 in CH 042 quiz: §§ 6.4, 7.1 § 7.3 - trig substitution review

wednesday:

webwork 4 due @ 11:55 pm

mslc: webwork workshop @ 12:30, 1:30, 2:30, 3:30, 4:30 in SEL 040 mslc: integration techniques workshop @ 1:30 and 3:30 in CH 042 mslc: midterm review @ 7:30 pm in HI 131

thursday, 29 october:

midterm: §§ 6.2-6.4, 7.1-7.3 § 7.4 - partial fractions

tuesday, 3 november:

homework 5 due (7.3.8, 7.3.22, 7.3.40, 7.4.20, 7.4.48, 7.4.50)

integration by parts

integration by parts

The product rule states

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(f(x)\,g(x)\right) = f(x)\,g'(x) + f'(x)\,g(x)$$

rearranging terms, we have

$$f(x) g'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) g(x) \right) - f'(x) g(x)$$

integration by parts

rearranging terms, we have

$$f(x)g'(x) = \frac{\mathrm{d}}{\mathrm{d}x}\left(f(x)g(x)\right) - f'(x)g(x)$$

integrating,

$$\int f(x) g'(x) dx = \int \frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) g(x) \right) dx - \int f'(x) g(x) dx$$

integration by parts

integrating,

$$\int f(x) g'(x) dx = \int \frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) g(x) \right) dx - \int f'(x) g(x) dx$$

so by the fundamental theorem of calculus,

$$\int f(x) g'(x) dx = f(x) g(x) - \int g(x) f'(x) dx$$

integration by parts

so by the fundamental theorem of calculus,

$$\int f(x) g'(x) dx = f(x) g(x) - \int g(x) f'(x) dx$$

letting u = f(x) and v = g(x), we conclude

$$\int u \, \mathrm{d}v = u \, v - \int v \, \mathrm{d}u$$

Recall: u substitution lets us recognize the result of the chain rule. Integration by parts uses the product rule, but more subtly.

example evaluate $\int x e^x \, \mathrm{d}x$ Use u=x, dv=e^x dx. When working this example, include constant of integration for v, show it cancels out, so we don't need to do that.

example evaluate $\int x^2 e^x \,\mathrm{d}x$ Use the result of the previous example to solve this integral. Moral: integration by parts may simplify things, but they may still need more simplification.

example evaluate $\int x^5 e^{x^2} \,\mathrm{d}x$ Start with a u-substitution to simplify things: u=x 2. Then the problem essentially becomes the previous example. Moral: sometimes combine techniques This question from Leithold TC7, 7.1.16.

example evaluate $\int \ln(x) \, \mathrm{d}x$ Here we have no choice but to take dv=dx. It seems like this would make our integral more complicated, but it cancels with the derivative of In.

show

$$\int \sec x \, dx = \ln |\sec x + \tan x| + C$$

$$urreat the state that the state the state the state the state that the state that the state the state the state that the state the state that tha$$

$\int \sin$	$n^m(x)$ of	$\cos^n(x) \mathrm{d}x$
May need to do a u- substitution first to get your expression into this form. In the last example, we could have made the substitution v=2x first to get it into form, then used these rules. Note: The substitution will only work if sin and cos are both working on the same input won't	m odd	turn all but one sine into a cosine, then let $u = \cos(x)$
	n odd	turn all but one cosine into a sine, then let $u = \sin(x)$
ork with sin(3x) cos(7x+2)	n and n even	use half-angle identities

J	$\int \tan^m \left(x \right)$	$\sec^{n}(x) \mathrm{d}x$
	$m \; {\sf odd}$	turn all but one tangent into secant, then let $u = \sec(x)$
As before, here tangent and secant must both have the same input to use these rules.	angent both put to	turn all but two secant into tangent, then let $u = \tan(x)$
	otherwise	no general rule

example evaluate $\int \sec^3(x) \, \mathrm{d}x$ This is Stewart's example 8. This doesn't fall into one of our rules. First do an integration by parts, u=sec(x), dv=sec^2 (x) dx. Turn the tan^2 into sec^2 - 1, solve for the integral of sec°3, use the formula for integral of sec discovered earlier to conclude (sec x tan x + In | sec x + tan x|)/2 + C

coming soon

- webwork project I (extra credit) due monday at 6 am
- homework 4 due tuesday
- read § 7.3 for tuesday
- quiz tuesday
- midterm on thursday

They know everything they need to know for project 2 and most of what they need for project 3. Project 2 due at 6am on 16 November.